Расчет обмоток трансформатора и его сердечника

Содержание:

1. Выбор сердечника

Всем доброго времени суток! В прошлых статьях я рассказывал об определении параметров трансформатора, которые позволят рассчитать его с высокой точностью, практически, исключая необходимость повторного расчёта. Теперь необходимо совместить все параметры и выполнить полный расчёт трансформатора.

В настоящее время разработано и выпускается большое количество трансформаторов различного назначения. Однако они не всегда удовлетворяют конкретным условиям работы или их параметры не соответствуют предъявляемым к ним требованиям, например, по мощности, частоте, сочетанию напряжений вторичных обмоток, режиму работы, типу конструкции и т.д. В связи с этим возникает необходимость в проектировании и расчёте необходимого трансформатора.

Инженерный расчёт трансформатора состоит из следующих этапов:

— выбор или расчёт необходимого сердечника с определением его основных размеров;

— электрический расчёт трансформатора;

— конструктивный расчёт обмоток трансформатора.

Данным этапам предшествует выбор типа трансформатора и его принципиальной конструкции.

Как выбрать тип трансформатора

О выборе типа трансформатора и его сердечника я рассказывал в данной статье. Напомню, что основными типами являются броневые (БТ), стержневые (СТ) и тороидальные (ТТ) трансформаторы.

основные типы трансформаторов

Основные типы сердечников трансформаторов.

Кроме этих типов для прессованных сердечников существуют другие разновидности основных типов, например, EER, EFD, EP, EPO, EPX, LP, PM и т.д.

Сердечники типа EER,EP,RM,ELT

Некоторые типы прессовых сердечников.

При выборе типа сердечника следует придерживаться следующими рекомендациями:

— собственное и внешнее рассеивание магнитного поля и восприимчивость к внешним полям минимально у ТТ, далее идёт СТ, а наихудшее у БТ;

— собственная ёмкость обмоток максимальна у ТТ, а при использовании фольговых обмоток возрастает также у БТ и СТ;

— размещение большого количества выводов у БТ затруднительно, так как все обмотки размещаются на одном стержне;

— наименее технологичным является ТТ, из-за необходимости последовательного изготовления сердечника и катушек, что удлиняет цикл производства, а самым технологичным является БТ, из-за наличия одной катушки;

— минимальный вес и габариты при условии высокой технологичности обеспечивает СТ, а при малых мощностях – БТ;

— использование ТТ более рационально на высоких частотах.

По весу и габаритам трансформаторы располагаются в следующей последовательности:

малые – ТТ (при повышенных частотах), БТ, СТ, ТТ (промышленная частота);

средние – ТТ, СТ, БТ;

большие – СТ, БТ, ТТ.

При этом разница между соседними типами составляет до 30 %.

Определить расчётные коэффициенты трансформатора

К данным коэффициентам относятся коэффициенты заполнения сердечника kc и окна kOK,

теплоотдачи α и перепада температур Γ. Их необходимо знать до начала расчёта, но все они зависят от размеров трансформатора, которые не известны до начала расчёта. Поэтому при их выборе можно использовать как теоретические данные, так и накопленные предыдущим опытом проектирования.

Коэффициент заполнения сердечника kc зависит от толщины магнитного материала и технологии изготовления магнитопровода.

Для прессованных сердечников

Для ленточных и штампованных сердечников данный параметр зависит от толщины пластин или ленты

Толщина ленты, мм 0,35 0,15 0,1-0,08 0,05 0,02
Коэффициент заполнения сердечника, kc 0,93 0,9 0,85 0,75-0,8 0,65-0,7

Коэффициент заполнения окна kOK зависит от размеров окна, качества изоляции, вида проводникового материала, его толщины и диаметра и технологии намоточных работ. А у трансформатора с неполным заполнением окна (ТНЗО) – от степени заполнения окна c. В связи с этим значение kOK уменьшается при увеличении напряжения, числа обмоток, перегрева, частоты, уменьшения мощности.

Подробнее о выборе данного коэффициента можно почитать ЗДЕСЬ.

Для расчёта kOK при известных размерах окна сердечника можно определить по следующему выражению

ko — коэффициент заполнения проводниковым материалом чистого сечения катушки в плоскости окна, за вычетом всех технологических зазоров и толщин слоевой и корпусной изоляции.

∆h и ∆c – суммарная толщина корпусной и межобмоточной изоляции по высоте и ширине.

δ – минимальное значение ширины канала в окне магнитопровода,

c — степень заполнения окна катушками, то есть отношение ширины окна, занятой катушками, к полной ширине окна с:

где n — число сечений катушек в окне, для БТ n = 1, для СТ, ТТ n = 2,

ск – толщина одной катушки (на одну сторону), для БТ ск = с, для СТ, ТТ ск = с/2,

с – ширина окна сердечника.

При условии полного заполнения окна сердечника c = 1, при неполном заполнении c < 1.

На рисунке ниже приведены данные параметры

тонкая структура трансформатора

Сечения трансформаторов с учетом тонкой структуры.

Параметр ∆h является зазором в окне сердечника между его поперечными ярмами и торцами катушек (включая толщину изоляции зазора). Величина ∆c соответствует корпусной изоляции катушек в окне (включая зазор внутри гильзы и её толщину). Значение δ указывает на зазор в окне сердечника между его продольными ярмами и боковой поверхности катушек или между боковыми поверхностями двух смежных катушек в окне сердечника.

Для типовых условий можно использовать данные таблицы ниже

Параметр БТ СТ ТТ
∆h, см 0,4 0,4
∆c, см 0,27 0,46 0,32
δ, см 0,07 0,07 δТТ
k0 0,42 0,42 0,38

Для катушек из фольги ko = 0,68.

Для первоначальных и прикидочных расчётов можно принять следующие значения коэффициента заполнения окна: для типовых условий kOK = 0,3, для высоковольтных и высокочастотных трансформаторов kOK = 0,05 … 0,2.

Коэффициент теплоотдачи α показывает плотность теплового потока при перепаде температур на 1 ºС, подробнее рассматривался в данной статье. Он зависит от нескольких факторов и в первую очередь от перегрева τ и высоты катушки hK. Как правило, высота катушки до начала расчётов не известна, поэтому используется понятие базисных или типовых условий для которых τ = 50 ºС, tC = 20 ºС, hK = 5 см. Для которых α = 1*10 -3 Вт/(см 2 *ºС).

Коэффициент перепада температур в катушке Γ показывает отношение максимального перегрева к перегреву поверхности катушки. Рассматривался подробно в данной статье. Аналогично как и для коэффициента теплоотдачи для типовых условий можно считать: для ТТ Γ = 1,25, для других типов Γ = 1,06, для трансформаторов с неполным заполнением ТНЗО Γ = 1,15.

Удельные потери в сердечнике p1, psv, psm, PV показывает, каковы потери мощности в единице объёма или веса магнитного материала. Рассматривался подробно в данной статье.

Напряжённость магнитного поля Н имеет зависимость от типа магнитного материала и магнитной индукции. Зависимость от индукции достаточно не линейна и имеет название основной кривой намагничивания

основная кривая намагничивания

Петля гистерезиса и основная кривая намагничивания (красная).

Значение удельных потерь в сердечнике и зависимость напряженности магнитного поля от индукции приводятся в справочных материалах не конкретный ферромагнетик.

Дополнительные исходные величины

К данным параметрам относятся характеристики материалов и величины связанные с электрическим режимом и геометрией трансформатора.

К характеристикам материалов относятся удельные сопротивления ρ20 и плотность магнитного и проводникового ρК материала.

Для горячекатаной стали ρС = 7,55, холоднокатаной стали ρС = 7,65, сплавов 50Н ρС = 8,2, 80НХС, 79НМ ρС = 8,5 г/см 3 , для меди ρК = 8,9, для алюминия 2,7 г/см 3 .

Температурный коэффициент увеличения сопротивления kτ показывает отношение сопротивления материала при рабочей температуре tp к температуре при которой измерялся коэффициент ρ20 (t = 20 ºС).

где αρ – температурный коэффициент сопротивления ТКС, αρ = 0,004 ºС -1 ,

tc – температура среды,

τМ – максимальный перегрев катушки трансформатора,

Γ – коэффициент перепада температур в катушке.

Кроме ТКС на величину сопротивления обмоток трансформатора оказывают влияние высокочастотные эффекты переменного напряжения, с которыми можно ознакомиться здесь. Однако они проявляют себя при диаметре толщине проводникового материала больше глубины скин-слоя.

Глубину скин-слоя можно определить по следующему выражению

где ρ – удельное сопротивление проводника, для меди ρ = 0,0172 Ом*мм 2 /м,

μα — абсолютная магнитная проницаемость проводника, для меди μα = 4*π*10 -7 Гн/м,

μ0 — относительная магнитная проницаемость проводника, для меди μ0 ≈ 1,

f – частота переменного тока.

Предельная рабочая индукция BS имеет различное значение для разных видов магнитного материала, например, для холоднокатаной стали BS ≈ 1,6 Тл, горячекатаной BS ≈ 1,25 Тл, 80НХС, 79НМ BS = 0,6 Тл, 50Н BS = 1,1…1,2 Тл, 2500НМС BS = 0,2 Тл.

Тип трансформаторов ТВР и ТЕР. ТВР – трансформаторы вынужденного режима работы, когда индукцию в сердечнике В ограничена предельной рабочей индукцией BS (В = BS). ТЕР – трансформатор естественного режима работы, когда индукция в сердечнике В ограничивается потерями в сердечнике (В < BS). Если во время расчёта ТВР соотношение потерь в трансформаторе ν оказалось больше оптимальных νо (ν > νо), то трансформатор необходимо пересчитать, как ТЕР. Иначе при расчёте ТЕР индукция в сердечнике получилась больше предельной (В > BS), то необходимо пересчитать трансформатор как ТВР.

К ТВР, обычно, относятся трансформаторы промышленной частоты (50 Гц), кроме случаев заданного падения напряжения; трансформаторы с высоким перегревом; трансформаторы повторно-кратковременного режима работы, если нет ограничения по падению напряжения.

К ТЕР относят трансформаторы повышенной и высокой частоты (кроме малых на частоте до 500 Гц) и трансформаторы промышленной частоты (50 Гц) с небольшим перегревом.

Соотношение потерь в сердечнике ν = рск рассмотренно в предыдущей статье.

Для ТЕР соотношение потерь составит ν = νо.

где β – соотношение площадей поверхностей охлаждения,

φi – геометрические изображения параметров сердечников, смотреть здесь.

Расчётный параметр Б необходим для определения величины перегрева трансформатора и определяется выражением

Относительный первичный ток i1 рассмотрен в данной статье. При активной нагрузке трансформатора составляет

Реактивная составляющая i0r первичного тока вычисляется по выражению

где Не – эквивалентная напряженность магнитного поля (с учётом зазора),

lC – длина средней магнитной линии сердечника,

ω – количество витков обмотки,

j2 – плотность тока вторичной обмотки,

q2 – сечение провода вторичной обмотки.

Так как параметры сердечника не известны до начала расчёта, то можно принять для типовых условий i1 = 1,1, а параметр (1 + i1) = 2,1.

Соотношение плотностей токов в обмотках ε = j2/j1. При заданном перегреве (τ = const) определяется выражением

При заданном падении напряжения (u = const)

где x, y – параметры геометрии.

Для типовых условий до начала расчёта можно принять ε0 = 0,75, ε0i1 = 0,85, (1 + ε0i1) = 1,85.

Коэффициент допустимого увеличения потерь qp используется при расчёте трансформатора работающего в повторно-кратковременном режиме. Он зависит от отношения длительность работы tH к длительности цикла tЦ.

Определение коэффициента qp

Определение коэффициента qp.

Определение времени нагрева трансформатора

Определение времени нагрева трансформатора.

Параметры геометрии x, y, z и геометрические изображения φi были введены в данной статье и определяются размерами сердечника трансформатора a, b, c, h.

Типы сердечников трансформаторов: броневой, стержневой и тороидальный

Ориентировочные практические рекомендации для различных условий проектирования и типов трансформаторов приведены там же.

Расчет мощности трансформатора

Расчёт мощности трансформатора происходит на основе основного уравнения мощности трансформатора, которое связывает электромагнитную мощность Р с размерами трансформатора

где kC, kOK, ε, i1 определены в данной статье,

SOK, SC – площади сечения окна и сердечника трансформатора, см 2 ,

j2 – плотность тока вторичных обмоток, А/см 2 ,

В – магнитная индукция в сердечнике, Тл.

При работе на выпрямитель приведенный первичный ток нагрузки вычисляют по выражению

где kBi – корректирующий коэффициент, зависящий от типа выпрямителя: при отсутствия выпрямителя, для схем удвоения напряжения и мостовых схем kBi = 1, для однофазной схемы со средней точкой kBi = 0,71, для трёхфазной с нулевой точкой kBi = 0,81, для однополупериодной определяется выражением

где ICP – средний ток нагрузки,

IД – действующий ток обмотки.

Появление множителей kBi приводит к необходимости коррекции расчётная мощности первичной обмотки. Поэтому вместо выходной мощности P2 вводится понятие габаритной мощности РГ, которая учитывает наличие выпрямителей.

Вследствие наличия потерь при работе трансформатора выходная мощность Р2 всегда меньше электромагнитной мощности трансформатора Р. Для вычисления электромагнитной мощности Р через выходную мощность трансформатора Р2вводят коэффициент увеличения электромагнитной мощности сР, показывающий соотношение между ними

Для типовых условий определить сР можно по следующему графику

Коэффициент увеличения мощности

Зависимость коэффициента увеличения электромагнитной мощности от мощности трансформатора.

Для других значений параметров τМ, f, BS, ρ20, PV параметр сР можно пересчитать по следующим выражениям.

где с * Р – коэффициент ср согласно графика выше,

рΔ – удельные потери мощности при заданной индукции, массе, объёму или частоте.

Как определить основные размеры сердечника?

Нахождение основных размеров сердечника сводится к нахождению произведения площадей окна SOK и сердечника SC

Тогда основные размеры определяются следующими выражениями

Разбивка SOKSC должна быть произведена так, чтобы получить параметры x, y, z оптимальными в соответствии с требуемым условием.

В тоже время, используя функции геометрии φi можно определить основной размер сразу

При необходимости придать сердечнику иную форму значения параметров x, y, z выбирают в соответствии с поставленной целью.

В следующей статье я приведу примеры выбора сердечника в соответствии с требуемыми условиями.

Теория это хорошо, но необходимо отрабатывать это всё практически ПОПРОБОВАТЬ МОЖНО ЗДЕСЬ

Расчет трансформатора

Силовой трансформатор является наиболее простым примером преобразования электрической энергии. Даже при условии постоянного совершенствования радиоэлектронных устройств и источников питания на их основе блоки питания на основе трансформаторов переменного напряжения не теряют актуальности.

Силовой трансформатор

Трансформаторы для блока питания имеют большие габариты и массу, работают в ограниченном диапазоне допустимого входного напряжения, но при этом очень просты в реализации, отличаются высокой надежностью и ремонтопригодностью.

Типы магнитопроводов

Основой трансформатора переменного тока является магнитопровод, который должен обладать определенными магнитными свойствами. В трансформаторах используется сталь особого состава и со специфической обработкой (трансформаторное железо). В процессе работы трансформатора в магнитопроводе образуются вихревые токи, которые нагревают сердечник и ведут к снижению КПД трансформатора. Для снижения вихревых токов сердечник выполняют не монолитным, а собранным из тонких стальных пластин или лент, покрытых непроводящим оксидным слоем.

По типу используемого металла сердечники разделяют на:

  • Пластинчатые;
  • Ленточные.

Первый тип сердечников собирается в виде пакета из отдельных пластин соответствующей формы, а второй – наматывается из ленты. В дальнейшем ленточный сердечник может быть разрезан на отдельные сегменты для удобства намотки провода.

По типу магнитопровода различают сердечники:

Каждый из перечисленных типов может различаться формой пластин или сегментов:

  • Броневый;
  • Ш образный;
  • Кольцевой.

Форма и тип сердечника в теории не влияют на методику расчета, но на практике это следует учитывать при определении КПД и количества витков обмоток.

Типы сердечников

Кольцевой (тороидальный) сердечник отличается наилучшими свойствами. Трансформатор, выполненный на таком магнитопроводе, будет иметь максимальный КПД и минимальный ток холостого хода. Это оправдывает самую большую трудоемкость выполнения обмоток, поскольку в домашних условиях эта работа выполняется исключительно вручную, без использования намоточного станка.

Исходные данные

Исходными данными, на основе которых производится расчет трансформатора, в обязательном порядке являются:

  • Напряжение сети;
  • Напряжение и количество вторичных обмоток;
  • Токи потребления нагрузок.

Для полного и точного расчета понижающего трансформатора необходимо учитывать температурный режим, допускаемые отклонения напряжения первичной обмотки и еще некоторые факторы, однако практика показывает, что трансформаторы, изготовленные по данным упрощенного расчета, имеют достаточно хорошие параметры. Далее будет рассказано, как рассчитать трансформатор, не прибегая к сложным и громоздким вычислениям.

Порядок расчета

Расчет силового трансформатора начинается с определения габаритной мощности. Для начала определяется суммарная полная мощность всех вторичных обмоток:

Как рассчитать мощность трансформатора, если неизвестны мощности обмоток? Узнать ее поможет известная из курса физики формула:

Габаритная мощность трансформатора находится из полной с учетом КПД, который различается для устройств разной мощности. Опытным путем установлены следующие ориентировочные значения КПД:

  • До 50 Вт – 0.6 (60%);
  • От 50 до 100 Вт – 0.7 (70%);
  • От 100 до 150 Вт – 0.8 (80%).

Более мощный трансформатор будет иметь КПД 0.85.

Таким образом, расчет габаритной мощности выглядит таким образом:

Рг = КПД∙Рс, где Рс – полная мощность.

На основе габаритной мощности трансформатора можно определить площадь поперечного сечения магнитопровода:

Согласно данной формуле, искомая площадь сечения получается в квадратных сантиметрах. По полученным данным подбирают сердечник с близким или несколько большим значением сечения. Используя разборные сердечники из Ш и П образных пластин, можно в некоторых пределах изменять толщину набора, добавляя или убирая по несколько пластин.

Как определить мощность неизвестного трансформатора? Нужно возвести в квадрат площадь сердечника, выраженную в квадратных сантиметрах.

Обратите внимание! Поперечное сечение магнитопровода должно, по возможности, иметь приближенную к квадрату форму.

После выбора магнитопровода, рассчитываем намоточные данные. Имея в наличии магнитопровод и зная площадь его сечения, можно выполнить расчет обмоток трансформатора (количества витков в обмотках). Принято за основу расчета брать количество витков, которые приходятся на 1 В напряжения, поскольку данное число одинаково для всех обмоток и зависит от характеристик магнитопровода и частоты напряжения питающей сети. Полная формула, которая учитывает частоту сети, магнитную индукцию в сердечнике, имеет большую сложность и в расчетах практически никогда не применяется. Вместо этого используют упрощенный вариант, который учитывает лишь материал и конструкцию сердечника:

N=k/S, где k – коэффициент из следующего перечня:

  • Ш и П образные пластины магнитопровода – k = 60;
  • Ленточный сердечник – k = 50;
  • Тороидальный магнитопровод – k = 40.

Как видно, при использовании тороидального сердечника количество витков будет минимальным.

Тороидальный трансформатор

Зная количество витков на вольт, легко определить намоточные данные обмоток на любое напряжение:

Для первичной обмотки это будет:

Обратите внимание! Поскольку для понижающих трансформаторов сечение провода и количество витков сетевой обмотки больше всех остальных, то и омические потери в проводах также будут выше, поэтому для маломощных трансформаторов (до 100 Вт) нужно учесть эти потери, увеличив количество витков первичной обмотки на 5%.

Если рассчитывается трансформатор стержневого типа, то обычно обмотки делят пополам и наматывают их на обоих стержнях равномерно. Части одинаковых обмоток затем соединяют последовательно.

Не менее важным этапом расчета трансформатора является определение сечения проводников обмотки. Здесь за основу берется такое значение тока в проводах, которое вызывает их минимальный нагрев. Чем выше сечение провода, тем меньше плотность тока через единицу сечения и, соответственно, меньше нагрев. Но чрезмерное увеличение сечения обмоточных проводов приводит к увеличению массы трансформатора, завышению стоимости, а также вероятности того, что обмотки просто не поместятся в окнах магнитопровода.

Принято считать оптимальным плотность тока в обмотках 4-7 А на 1 мм2. Меньшее значение плотности используется для расчета сечения проводов первичной обмотки или любой другой, которая находится ближе к сердечнику магнитопровода. У данных обмоток наихудшие условия охлаждения.

Чтобы не оперировать плотностями тока и сложными формулами перевода площади сечения в диаметр, можно посчитать диаметр, используя их упрощенный вариант:

  • d = 0.7∙√I – для проводников первичной обмотки;
  • d = 0.6∙√I – для проводников вторичных обмоток.

Для обмоток используется изолированный обмоточный провод по сечению, наиболее близкому к расчетному, но не меньше его.

Важно! Формула дает расчётное значение для голого провода, без учета изоляции.

Для измерения диаметра неизвестного провода необходим микрометр. Приблизительно определить диаметр можно, намотав на карандаш десять витков и измерив длину намотки.

Чтобы определить, поместятся ли обмотки в окнах магнитопровода, подсчитайте коэффициент заполнения окна:

K=0.008∙(d12 ∙w1+ d22 ∙w2+ d32 ∙w3+…)/Sокна.

Если получившееся значение больше 0.3, то обмотки не поместятся, а перемотка наполовину готового устройства к хорошему результату не приведет. Выходов несколько:

  • Использовать магнитопровод с большим сечением;
  • Увеличить плотность тока в обмотках (не более 5%);
  • Понизить число витков во всех обмотках одновременно (также не более 5%).

Уменьшение количества витков приведет к появлению повышенного тока холостого хода и потерям в трансформаторе, которые буду выражены в повышении его температуры. Поэтому использование последних двух способов можно рекомендовать исключительно как крайнюю меру.

Выполнение обмоток

Обмотки трансформатора выполняют на каркасе из изоляционного материала. Каркас может быть цельным или разборным. Несмотря на кажущуюся сложность, разборный каркас изготовить легче, к тому же его размеры легко пересчитать под любой имеющийся сердечник. Из материалов для каркаса можно взять листовой гетинакс, текстолит или стеклотекстолит. В щечках каркаса нужно предусмотреть отверстия для выводов.

Разборный каркас

Выводы обмоток выполняют гибким многожильным проводом, тщательно заизолировав место пайки. Саму обмотку выполняют, по возможности, виток к витку. Такая намотка позволяет лучше использовать свободное место, сокращает расход провода, а главное – в местах пересечения проводов при некачественно выполненной намотке существует риск повреждения изоляции и междувитковых замыканий. Это правило не касается тонкого провода с диаметром менее 0.2 мм, поскольку рядовую обмотку в домашних условиях на нем выполнить очень тяжело.

Каждую обмотку необходимо изолировать одна от другой, особенно первичную обмотку. Для изоляции можно использовать несколько слоев ФУМ ленты. Она выполнена из фторопласта, который обладает хорошими электроизоляционными свойствами.

Важно! ФУМ лента имеет малую толщину, а фторопласт обладает текучестью, поэтому делать нужно несколько слоев изоляции.

ФУМ лента

Сборка трансформатора

Качество трансформатора во многом зависит от правильности сборки магнитопровода. При сборке Ш образного броневого сердечника соседние пластины нужно укладывать поочередно в разные стороны. Пакет пластин должен быть уложен максимально плотно. После сборки его нужно обязательно плотно стянуть винтами. Неплотно стянутый трансформатор издает сильный шум во время работы. Особое внимание следует уделить плотному прилеганию Ш образных пластин с пластинами перекрытия. Зазор между ними приведет к тому, что сердечник станет разомкнутым, а отсюда вытекает следующее:

  • Повышение тока холостого хода;
  • Снижение КПД;
  • Повышенное магнитное поле рассеивания.

При сборке разрезного ленточного сердечника нужно обращать внимание на соответствие частей друг другу, поскольку при изготовлении они подгоняются путем шлифовки. Для понижения шума торцы пакетов пластин можно покрыть слоем лака.

Ленточный сердечник

Обратите внимание! Части ленточного магнитопровода требуют аккуратного обращения, поскольку расслоившиеся ленты практически невозможно установить на прежнее место. Пластины разборного сердечника нельзя гнуть и подвергать ударам, поскольку это нарушит структуру металла, и он потеряет свои свойства. В крайнем случае, изогнутые под большим радиусом пластины нужно аккуратно разогнуть руками и при сборке уложить их в середину пакета пластин. При дальнейшей стяжке они выровняются.

Расчет сетевого трансформатора не представляет сложности. Важнее здесь определиться с предъявляемыми к нему требованиями. От правильности поставленной задачи будет зависеть точность дальнейших расчетов. Для силового трансформатора расчет так же удобно выполнить, используя онлайн калькулятор. По такой же методике рассчитывается повышающий трансформатор.